11 research outputs found

    Determinación de la emisividad y de la temperatura de la superficie del mar mediante radiometría térmica.

    Get PDF
    RESUMEN La medida de la temperatura de la superficie del mar (TSM) desde satélite parecía ser un problema resuelto mediante aproximaciones que partían de la homogeneidad para esta superficie. Sin embargo, en los últimos años han surgido nuevas exigencias en cuanto a la precisión en la determinación de esta magnitud clave para el estudio de los procesos de intercambio en la interfase océano-atmósfera. En esta Tesis Doctoral, y en el marco de la Misión Soil Moisture and Ocean Salinity (SMOS) de la Agencia Espacial Europea, se abordan dos temas pendientes en el campo del desarrollo de algoritmos para la determinación precisa de la TSM a partir de observaciones desde el espacio. Se propone, en primer lugar, una metodología operativa y autónoma para la medida de la TSM in situ, que pueda servir como referencia para el desarrollo y validación de dichos algoritmos. Para ello, muchos trabajos han considerado medidas realizadas mediante sondas contacto a cierta profundidad, sin embargo la estratificación térmica de la capa más superficial del océano hace que exista una discrepancia significativa y no simple entre ambas temperaturas, apuntando a la necesidad de la medida de la TSM mediante radiometría térmica. La metodología propuesta parte de un análisis de las magnitudes participantes en el modelo radiativo para la superficie del mar, con el objetivo de establecer la mejor estrategia de medida para la obtención de la TSM con la máxima precisión posible. Dicha metodología permitió la medida de la TSM con una precisión de ± 0,15 K durante las campañas WInd and Salinity Experiment (WISE) 2000 y 2001, desarrolladas en la fase experimental de la misión SMOS. En segundo lugar, la emisividad de la superficie del mar (ESM), magnitud necesaria para la determinación de la TSM a partir de observaciones radiométricas, presenta unas dependencias que, de no estar bien caracterizadas, comportarían errores importantes en dicha temperatura. Para ello, se llevaron a cabo medidas angulares de la ESM para diferentes estados de la rugosidad del mar, que permitieron estudiar sus dependencias y, además, analizar la validez de los modelos teóricos existentes para su determinación. La comparación de estos valores experimentales con el modelo de Masuda et al. (1988) demuestra que éste estima adecuadamente la ESM para ángulos de observación inferiores a 50º, pero la subestima para ángulos superiores. Sin embargo, el modelo de Wu y Smith (1997), incorporando el efecto de la emisión reflejada de la propia superficie, consigue reproducir con mayor exactitud la ESM para cualquier geometría de observación y rugosidad de ésta. Comprobada la bondad de este modelo, pero teniendo en cuenta su complejidad matemática, la cual dificulta una aplicación operativa del mismo, el paso final fue el desarrollo de una parametrización simple pero precisa para la determinación de la ESM en función del ángulo de observación y de la velocidad del viento en superficie, la cual consigue reproducir dicha emisividad con un error inferior a ± 0,0010. Además, se proporcionan los coeficientes necesarios para el uso de dicha parametrización asociada a las bandas térmicas de sensores actualmente a bordo de satélite con posible visión para ángulos elevados: AATSR-ENVISAT, AVHRR-NOAA, MODIS-EOS Aqua/Terra y SEVIRI-MSG. La inclusión de dicha parametrizacion en los algoritmos de determinación de la TSM desde satélite permitiría corregir el decrecimiento de la ESM con el ángulo de observación, además del efecto de la rugosidad, mejorando su precisión para visiones apartadas del nadir, tanto en algoritmos de tipo multicanal como multiangular. ____________________________________________________________________________________________________ SUMMARY Sea Surface Temperature (SST) measurement from satellite seems to be solved. However, a higher accuracy in the SST is required nowadays to study the interchange processes produced in the sea-atmosphere interface. This Thesis, in the framework of the Soil Moisture and Ocean Salinity (SMOS) Mission of the European Space Agency, deals with two pending issues in the development of algorithms for an accurate SST retrieval from space. First, an operational and autonomous methodology is proposed for the in situ SST measurement, which could be a reference for the development and validation of these algorithms. Most of the previous works have been using values measured by contact probes in depth, but there is a significant difference between both temperatures due to the surface thermal stratification and so a SST determination by thermal radiometry is required. The methodology development begins with an analysis of each term of the sea radiative model to establish the best measurement strategy to obtain the maximum SST accuracy. This methodology permitted us to determine SST with an uncertainty of ±0.15K during the WInd and Salinity Experiment (WISE) 2000 and 2001, carried out within the SMOS Mission. Secondly, the Sea Surface Emissivity (SSE), which is necessary for the SST retrieval from radiometric observations, shows physical dependences that need an accurate characterization. Thus, angular SSE measurements were carried out under a wide range of sea surface roughness conditions, which allowed us to study these dependences and to analyse the soundness of the theoretical models for SSE estimate. The model proposed by Masuda et al. (1988) works only for observation angles up to 50º, but the Wu and Smith model (1997) reproduces accurately SSE for any viewing geometry and surface roughness. Once the soundness of this last model was checked as well as its mathematical complexity, the final step was the development of a simple parametrization to obtain the SSE as a function of the observation angle and the surface wind speed. This operational algorithm is provided for several current satellite sensors: AATSR-ENVISAT, AVHRR-NOAA, MODIS-EOS Aqua/Terra and SEVIRI-MSG; and permits the SSE determination with an uncertainty lower than ±0.1%

    Evapotranspiration Retrieval Using S-SEBI Model with Landsat-8 Split-Window Land Surface Temperature Products over Two European Agricultural Crops

    Get PDF
    Crop evapotranspiration (ET) is a key variable within the global hydrological cycle to account for the irrigation scheduling, water budgeting, and planning of the water resources associated with irrigation in croplands. Remote sensing techniques provide geophysical information at a large spatial scale and over a relatively long time series, and even make possible the retrieval of ET at high spatiotemporal resolutions. The present short study analyzed the daily ET maps generated with the S-SEBI model, adapted to Landsat-8 retrieved land surface temperatures and broadband albedos, at two different crop sites for two consecutive years (2017-2018). Maps of land surface temperatures were determined using Landsat-8 Collection 2 data, after applying the split-window (SW) algorithm proposed for the operational SW product, which will be implemented in the future Collection 3. Preliminary results showed a good agreement with ground reference data for the main surface energy balance fluxes Rn and LE, and for daily ET values, with RMSEs around 50 W/m2 and 0.9 mm/d, respectively, and high correlation coefficient (R2 = 0.72-0.91). The acceptable uncertainties observed when comparing with local ground data were reaffirmed after the regional (spatial resolution of 9 km) comparison with reanalysis data obtained from ERA5-Land model, showing a StDev of 0.9 mm/d, RMSE = 1.1 mm/d, MAE = 0.9 mm/d, and MBE = −0.3 mm/d. This short communication tries to show some preliminary findings in the framework of the ongoing Tool4Extreme research project, in which one of the main objectives is the understanding and characterization of the hydrological cycle in the Mediterranean region, since it is key to improve the management of water resources in the context of climate change effects

    RAMS-forecasts comparison of typical summer atmospheric conditions over the Western Mediterranean coast

    Get PDF
    The Regional Atmospheric Modeling System (RAMS) has been used in order to perform a high-resolution numerical simulation of two meteorological events related to the most common atmospheric environments during the summer over the Western Mediterranean coast: mesoscale circulations and western synoptic advections. In this regard, we take advantage of the operational RAMS configuration running within the real-time forecasting system environment already implemented over this Mediterranean area, precisely in the Valencia Region and nearby areas. The attention of this paper is especially focused on identifying the main features of both events and the ability of the model in resolving the associated characteristics as well as in performing a comprehensive evaluation of the model by means of diverse meteorological observations available within the selected periods over the area of study. Additionally, as this paper is centred in RAMS-based forecasts, two simulations are operated applying the most two recent versions of the RAMS model implemented in the above-mentioned system: RAMS 4.4 and RAMS 6.0. Therefore, a comparison among both versions of the model has been performed as well. Finally, it is our intention to contrast the RAMS forecasts for two completely different atmospheric conditions common with the area of study in the summer. A main difference between the simulation of both meteorological situations has been found in the humidity. In this sense, whilst the model underestimates this magnitude considering the mesoscale event, especially at night time, the model reproduces the daily humidity properly under the western synoptic advection

    Land surface air temperature retrieval from EOS-MODIS images

    Get PDF
    The knowledge of the spatial and temporal patterns of Surface Air Temperature (SAT) is essential to monitor a region¿s climate and meteorology, quantify surface exchange processes, improve climatic and meteorological model results, and study health and economic impacts. This work analyzed correlations between SAT and geophysical land surface variables, Land Surface Temperature (LST) mainly, to establish operative techniques to obtain spatially-continuous land SAT maps from satellite data, unlike data provided by meteorological station networks. The correlations were analyzed by using EOS-MODIS images, meteorological station network data, and geographical variables. Linear regressions with MODIS-retrieved LST data gave SAT with uncertainties higher than ±2K during daytime and of ±1.8K at night-time. Nevertheless, SAT uncertainties decreased up to ±1.2K when other satellite-retrieved surface parameters, i.e. vegetation index and albedo, together with meteorological and geographical data were considered as terms of multivariable regressions. The equations finally proposed were shown to work properly for different land covers

    Evaluation of the MOD16A2 evapotranspiration product in an agricultural area of Argentina, the Pampas region

    Get PDF
    The Pampas Region is a big plain of approximately 520,000 km2 in Argentina. It is essential to estimate evapotranspiration (ET) in this region since the primary productivity is directly linked to water availability. Information provided by satellite missions allows monitoring the spatial and temporal variability of ET. In the current study, we evaluated the version 006 of MOD16A2 product (MOD16A2.006) of Potential Evapotranspiration (ETp) and Actual Evapotranspiration (ETa) in Argentinian Pampas Region (APR). MOD16A2.006 product was compared with Crop Evapotranspiration (ETc), calculated with local measurements from the Oficina de Riesgo Agropecuario (ORA), and Crop Coefficient (Kc) data (function of Normalized Difference Vegetation Index (NDVI)) in seven stations in the APR from 2009 to 2018. We evaluated ETa at two temporal scales: accumulated values (mm) per growth stages (soybean crop), and 8-day accumulated values (mm8d−1). The results showed a systematic overestimation around 65% for ETp(MOD16A2.006) (found and eliminated by means of a linear function) and underestimation (in most stations) for ETa(MOD16A2.006) in accumulated values per growth stages. Respect to mm8d−1, no systematic error was observed, but the relationship ETa(ORA) − ETa(MOD16A2.006) for soybean crop behaves similarly throughout APR

    Thermal-infrared spectral and angular characterization of crude oil and seawater emissivities for oil slick identification

    Get PDF
    Previous work has shown that crude oil emissivity is lower than that of seawater in the thermal-infrared (TIR) spectrum. Thus, oil slicks cause an emissivity decrease relative to seawater in that region. The aim of this paper was to carry out experimental measurements to characterize crude oil and seawater emissivity spectral and angular variations. The results showed that crude oil emissivity is lower than seawater emissivity and essentially flat in the 8 - 13 μm atmospheric window. Crude oil emissivity has a marked emissivity decrease with angle (from 0.956±0.005 at 15º to 0.873±0.007 at 65º), even higher than that of seawater, and thus the seawater-crude emissivity difference increases with angle (from +0.030±0.007 at close-to-nadir angles up to +0.068±0.010 in average at 65º). In addition, the experimental results were checked by using the dual-angle viewing capability of the ENVISAT-AATSR images (i.e., 0º-22º and 53º-55º for nadir and forward views respectively), with data acquired during the BP Deepwater Horizon oil slick in 2010. The objective was to explore the applicability to satellite observations. Nadir-forward emissivity differences of +0.028 and +0.017 were obtained for the oil slick and surrounding clean seawater respectively. Emissivity differences between the seawater and oil slick were +0.035 and +0.046 for nadir and forward views respectively, in agreement with the experimental data. The increase of seawater-crude emissivity difference with angle gives significant differences for off-nadir observation angles, showing a new chance of crude oil slick identification from satellite TIR data

    Cálculo de la evapotranspiración real diaria en la zona norte de Finlandia empleando técnicas de teledetección

    Get PDF
    J. M. Sánchez Tomás ([email protected])Hasta hace poco tiempo el estudio de la evapotranspiración (LE), fundamental en la ecuación de balance de energía, excluía zonas forestales debido a las dificultades experimentales de la toma de medidas en estas regiones. La teledetección acabó con dichas dificultades, facilitando el estudio de la LE real dentro de estas zonas, que suponen en torno a un 30% de toda la superficie terrestre. En este trabajo se presenta un método operativo para determinar la LE real a partir de medidas de temperatura de la superficie realizadas desde satélite. Este estudio se llevó a cabo de abril a junio de 2002 en Sodankylä, una región de bosque boreal en el norte de Finlandia, dentro del proyecto SIFLEX-2002 (Solar Induced Fluorescence Experiment-2002). Se ha realizado una validación del método, comparándolo con otras técnicas, y se ha obtenido para la zona de estudio un valor medio de LE diaria (LEd) de 2,6±0,5 mm/día. Finalmente hemos aplicado el método a una imagen del satélite Landsat 7-ETM+ de la zona para obtener un mapa de LEd a escala regional

    Monitoring 10-m LST from the Combination MODIS/Sentinel-2, Validation in a High Contrast Semi-Arid Agroecosystem

    Get PDF
    Downscaling techniques offer a solution to the lack of high-resolution satellite Thermal InfraRed (TIR) data and can bridge the gap until operational TIR missions accomplishing spatio-temporal requirements are available. These techniques are generally based on the Visible Near InfraRed (VNIR)-TIR variable relations at a coarse spatial resolution, and the assumption that the relationship between spectral bands is independent of the spatial resolution. In this work, we adopted a previous downscaling method and introduced some adjustments to the original formulation to improve the model performance. Maps of Land Surface Temperature (LST) with 10-m spatial resolution were obtained as output from the combination of MODIS/Sentinel-2 images. An experiment was conducted in an agricultural area located in the Barrax test site, Spain (39°03′35″ N, 2°06′ W), for the summer of 2018. Ground measurements of LST transects collocated with the MODIS overpasses were used for a robust local validation of the downscaling approach. Data from 6 different dates were available, covering a variety of croplands and surface conditions, with LST values ranging 300-325 K. Differences within ±4.0 K were observed between measured and modeled temperatures, with an average estimation error of ±2.2 K and a systematic deviation of 0.2 K for the full ground dataset. A further cross-validation of the disaggregated 10-m LST products was conducted using an additional set of Landsat-7/ETM+ images. A similar uncertainty of ±2.0 K was obtained as an average. These results are encouraging for the adaptation of this methodology to the tandem Sentinel-3/Sentinel-2, and are promising since the 10-m pixel size, together with the 3-5 days revisit frequency of Sentinel-2 satellites can fulfill the LST input requirements of the surface energy balance methods for a variety of hydrological, climatological or agricultural applications. However, certain limitations to capture the variability of extreme LST, or in recently sprinkler irrigated fields, claim the necessity to explore the implementation of soil moisture or vegetation indices sensitive to soil water content as inputs in the downscaling approach. The ground LST dataset introduced in this paper will be of great value for further refinements and assessments

    Simulación y validación de los algoritmos de la temperatura de la superficie terrestre para los datos de MODIS y AATSR

    Get PDF
    Se ha construido una base de datos de perfiles de radiosondeos atmosféricos, de alcance global y para situaciones sin nubes, con la finalidad de simular medidas radiométricas desde sensores abordo de satélite en el infrarrojo térmico. El objetivo de la simulación era generar algoritmos de "split-window" (SW) y ángulo dual (DA) para obtener la temperatura de la superficie terrestre (LST) a partir del Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) y de los datos del Envisat/Advanced Along Track Scanning Radiometer (AATSR). La base de datos contiene 382 perfiles de radiosondeo obtenidos desde la superficie terrestre, con una distribución casi uniforme en contenido de agua precipitable entre 0 y 5.5 cm. Los cálculos de transferencia radiativa fueron realizados con el código MODTRAN 4 para seis ángulos de visión diferentes entre 0 y 65°. Los espectros de radiancia que resultaron se integraron con las funciones del filtro de respuesta de las bandas 31 y 32 del MODIS y en los canales del AATSR a 11 y 12 µm. Utilizando la base de datos de simulación, se desarrollaron los algoritmos SW adaptados para los datos de MODIS y AATSR. Los dos tipos de algoritmos son cuadráticos en la diferencia de la temperatura de brillo y dependen explícitamente de la emisividad de la superficie terrestre. Estos algoritmos SW y DA fueron validados con medidas del suelo reales de LST tomadas simultáneamente con las observaciones de MODIS y AATSR en una zona de arrozales ancha, llana y térmicamente homogénea situada cerca de la ciudad de Valencia, España. Los resultados obtenidos no mostraron ningún error sistemático y tenían una desviación estándar de alrededor de ± 0.5 K para los algoritmos SW en el nadir de los dos sensores; el algoritmo SW utilizado en la visión hacia delante tuvo como resultado un error sistemático de 0.5 K y una desviación estándar de ± 0.8 K; los resultados menos precisos se obtuvieron en los algoritmos DA con un error sistemático cercano a -2.0 K y una desviación estándar cercana a ± 1.0 [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]

    Analyzing the anisotropy of thermal infrared emissivity over arid regions using a new MODIS land surface temperature and emissivity product (MOD21)

    No full text
    The MOD21 Land Surface Temperature and Emissivity (LST&E) product will be included in forthcoming Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6. Surface temperature and emissivities for thermal bands 29 (8.55 μm), 31 (11 μm) and 32 (12 μm) will be retrieved using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Temperature and Emissivity Separation (TES) method adapted to MODIS at-sensor spectral radiances, previously corrected with the Water Vapor Scaling method (MOD21 algorithm). We simulated MOD21 product estimates over two different sandy deserts (i.e. White Sands and Great Sands) using a series of MODIS scenes from 2010 to 2013. The objective of this study was to evaluate the anisotropy of the thermal infrared emissivity over semiarid regions, since angular variations of thermal infrared emissivity imply important uncertainties in satellite LST retrievals. The obtained LSEs and their dependence on zenith viewing angles were analyzed. Results from the MOD21 simulated algorithm showed that band 29 LSE decreased up to 0.038 from nadir to zenith angle of 60°, while LSEs for bands 31 and 32 did not show significant variation. MOD21 LSE for band 29 also showed mean differences between night and daytime retrievals of + 0.027 for WS and + 0.009 for GS. These differences can be attributed to the water vapor adsorption of the soil from the atmosphere. MOD21 nadir and off-nadir LSEs showed a good agreement with laboratory emissivity measurements, and were used to validate with satellite data a zenithal-dependent emissivity model proposed in a previous study
    corecore